東京大学
環境報告書
The University of Tokyo
Environmental Report
2006
総長の緒言

持続可能な社会の実現に向けて

21世紀の人類社会が直面している環境問題の課題は我々の身近なまわりから地球規模に至るものまで多岐にわたります。こうした問題への対処は、環境保全全面的にとらえず、今後の経済成長や科学技術開発のありかた、貧困問題の解決、安全・安心の確保など技術面のみならず社会経済問題と関連づけた取り組みが必要です。これらへの積極的な取り組みが持続可能な社会の実現につながると考えております。

現在、わが国が直面している課題を挙げると、少子高齢化社会の進行、エネルギー資源や食料の確保、循環型社会への移行、地球温暖化問題対応等があります。既にわが国の生産活動におけるエネルギー消費や環境汚染物質の排出は他の先進国レベルを凌駕しており、海外で参考となる問題解決のためのモデルは限られています。我々自らがこれらの課題を解決するために知の結集を図っていかねばなりません。

言い換えれば、課題があるからこそ、これに対する解を作ることが可能になります。わが国にはこれらを解決する力も実績もあります。我々自らが先頭に立って課題を解決していかねばなりません。

このような相互に複雑に絡み合う難問に正面から対処し、科学技術や社会経済システムのあるべき方向を示していくためには、各学問分野間の垣根を越え、人文社会科学と自然科学が互いに協力し知識を出し合い社会の進化に貢献すべき具体的な課題に対する取り組みが重要となります。

また複雑で相互に関係しあう現代社会の様々な問題を解決するには、要素還元主義に基づく既存の学術分野には限界があり、それを打破するために「知の爆発への対応」と「知識の構造化」が必要であり、これがサステイナビリティの確保につながります。

私は「本質を捉える知」「他者を感じる力」「先頭に立つ勇気」を常に念頭におき、時代の先頭に立って活動を進め前述の課題解決に貢献していくのが東京大学の責務と考えています。

今回、東京大学として、初めての環境報告書を発刊いたしました。この中では上記の課題に関する東京大学の取り組みを紹介しています。この環境報告書を通じて東京大学の環境問題解決に向けての教育・研究の取り組みをご理解いただければ幸いです。

東京大学総長 小宮山宏
目次

1. 環境配慮の方針
 東京大学憲章（抜粋） 3
 東京大学環境理念・環境基本方針 4

2. 東京大学について
 東京大学の概要 5
 組織と体制 7
 実績と目標 8

3. 環境・安全管理の取り組み
 省エネルギー対策 9
 環境物質等の調査実績の概要 11
 化学薬品の適正管理 12
 PRTR 実績 15
 安全衛生確保と環境への配慮 16
 使用済み薬品の回収・処理 17
 特殊な廃棄物の回収・処理 18
 廃棄物管理とリサイクル対策 19

4. 環境配慮に係る研究の紹介
 高性能固体素子部燃料電池のシステム設計 21
 バイオマスエネルギーの研究 22
 環境配慮型の化学実験室の紹介 23
 タミフルの完全人工合成 24
 鳥インフルエンザと環境 25
 野生のアザラシからインフルエンザ・ウィルスが発見された！ 26
 光触媒反応を利用した環境浄化 27
 環境調和型新キャンパス 28
 演習林が支える東京大学のCO2バランス 29
 AGSの活動 30

5. その他の活動について
 教育活動 31
 職員による活動 33
 学生による活動：環境三四郎 34
 キャンパスの公開 35
 本郷消防署との協働 36
 アスペクトへの取り組み 37
 潜水作業中の死亡事故と再発防止について 38
 バリアフリーへの取り組み 39

6. 環境報告書の信頼性の向上に向けて 41

7. おわりに 42
東京大学憲章（抜粋）

前文
21世紀に入り、人類は、国家を超えた地球人の交わりが飛躍的に強まる時代を迎えている。

日本もまた、世界に自らを開きつつ、その特質を発揮して人類文明に貢献することが求められている。東京大学は、この新しい世紀に際して、世界的の共性性に基づく大学として、学問と「世界の東京大学」なることとなり、日本国民からの付託に応えて日本社会に寄与する道であるとの信頼に立ち、国際、民族、言語等のあらゆる領域を超えた人類共通の真理と実を追求し、世界的平和と人類の福祉、人類と自然の共存、安全な環境の創造、広地域の均衡のとれた持続的な発展、科学・技術の進歩、および文化的な批判的発展と創造と、その教育・研究を通じて貢献することを、あらためて決意する。この使命の遂成に向けて新しい時代を切り拓こうとするこの時、東京大学は、その依拠に立つべき理念と目標を明らかにするために、東京大学憲章を制定する。

（中略）

大学は、人間の可能性の限りない発展に対してたずさわられられた構想をもつべき学問の源流の性格に由来して、その自由と自律性を必要としている。同時に科学・技術のめざましい進展は、それ自体として高度の倫理性と社会性をその抱負に求めている。また、知があらゆる領域で決定的な意味をもつ社会の到来により、大学における知を創造する場との連携は、大学における教育・研究の発展にますます大きな意味をもつつつある。このような観点から、東京大学は、その自治と自律を求むとともに、世界に向かって自らを開き、その研究成果を積極的に社会に還元しつつ、同時に社会の要請に応える研究活動を創造し、大学と社会の方向的な連携を推進する。

東京大学は、国民と社会から付託された資源を最も効率的に活用し、たえず自己革新を行って、世界水準の教育・研究を実現していくために、大学としての自己決定を重視するとともに、その決定と実践を厳しい社会の評価にさらさなければならないう。東京大学は、自らの評価と批判を踏まえて活動の全容を公開し、広く世界的な要請に的確に対応して、自らを変え、また、所与のシステムを変革する発展経路を強むことに求し、世界における学術と知の創造・交流そして発展に貢献する。

（中略）

日本と世界の未来を担う世代のために、また真理への志をもつ人々のために、最善の条件と環境を用意し、世界に関わって、かつ、差別から自由な知的探求の空間を構築することを、東京大学としての喜びに満ちた仕事である。ここに知の共同体としての東京大学は、自らに与えられた使命と課題を達成するために、以下に定める東京大学憲章に依り、すべての構成員の力をあわせて前進することを誓う。
東京大学環境理念・環境基本方針

東京大学は、人類と自然の共存、安全な環境の創造、地域の均衡のとれた持続的な発展、科学・技術の進歩、および文化的批判的継承と創造に、その教育・研究を通じて貢献すると東京大学憲章には記されている。これをふまえて、環境に関する具体的取組を明示するために、東京大学は下記の「東京大学環境理念」及び「東京大学環境基本方針」を定める。

東京大学環境理念

21世紀に入り、社会はこれまでの大量生産、大量消費、大量廃棄による資源の浪費型から持続的に発展可能な循環型へ変革することが一層強く求められている。この大きな流れと東京大学憲章をふまえ、東京大学は、世界をリードする大学として、蓄積された知と世界的視野を持ち社会からの要求に応える人材を育成するとともに、学外との積極的な連携により循環型社会の形成に貢献することによって、国民と社会から付与された資源による教育・研究成果を社会に還元する。われわれは東京大学の環境保全活動や環境改善活動の全容を公開し、環境配慮型キャンパスの構築を目指す。さらに「開かれた大学」として社会の評価にさらされることで積極的に自らを変革し、世界における環境改善に関する学術、知及び文化的創造・交流、そして社会の持続的な発展に貢献することを矢倉木に追求する。これらの実現のために、われわれは、東京大学環境基本方針に沿った活動を継続的に行う。

東京大学環境基本方針

（教育及び研究）
1. 東京大学は、総合大学としての特性を活かした教育活動と研究活動を融合し、環境に関する科学・技術の進歩に貢献し、環境に配慮した文化の発展に寄与する。
（大学の社会責任）
2. 東京大学のすべての構成員が、大学運営に対して適用される環境関係法令と大学で定めた基準を遵守し、研究活動による環境汚染の予防に努める。
（環境負荷の低減）
3. 東京大学は、大学運営と教育研究活動から発生する環境負荷の低減と省資源・省エネルギーを図り、国民と社会から付与された資源を最も有効に活用し活動の持続性と向上を追求する。
（地球社会の持続的発展）
4. 東京大学は、大学の枠や国境を超えて他大学や内外の研究機関との連携による研究に積極的に取り組み、地球社会の持続的発展に貢献する。
（地域の環境保全）
5. 東京大学は、地域社会の一員として環境に配慮した大学運営を図り、地域の環境保全に貢献する。
（自己改善）
6. 東京大学は、環境方針を達成するための環境目的及び環境目標を設定して環境保全活動を展開し、これを継続的に省みて見直し改善を図る。
（情報公開）
7. 東京大学は、環境に影響を与える活動を自ら点検し、環境情報を持続的に公開する。
東京大学の概要

創設 明治10年4月12日
構成員 7,332人（役員等・教職員等）（平成18年5月1日現在）
施設数 52施設
敷地面積（国有地）326,384,508㎡（平成18年4月1日現在）
建物延床面積 1,593,674㎡（平成18年4月1日現在）

<table>
<thead>
<tr>
<th>役員等・教職員（平成18年5月1日現在）</th>
<th>学部（平成18年5月1日現在）</th>
<th>大学院（平成18年5月1日現在）</th>
</tr>
</thead>
<tbody>
<tr>
<td>男性</td>
<td>女性</td>
<td>男性</td>
</tr>
<tr>
<td>役員等</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>教職員</td>
<td>5,279</td>
<td>2,039</td>
</tr>
<tr>
<td>小計</td>
<td>5,293</td>
<td>2,039</td>
</tr>
<tr>
<td>留学生</td>
<td>男性</td>
<td>女性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>総計</td>
<td>7,332</td>
<td>14,601</td>
</tr>
</tbody>
</table>

平成17年度支出総額

- 総支出額 222,451万円（単位：百万円）
- 教育研究経費 79,730万円
- 人件費 74,269万円
- 物件費 51,469万円
- 研究所・施設（平成18年4月1日現在）
- 演習林・牧場・農場 323,922,870㎡（平成18年4月1日現在）
三極構造構想

教育研究の将来構想をキャンパス面に反映したものである。同時に、政府機関の一極集中の歪みという社会的要因にも配慮しつつ、各キャンパスで開拓される活動の有機的連携を確保するため、日常生活の可能な位置に主要キャンパスを配置しようとする構想である。

本郷地区キャンパス

三極構造の重心をなすキャンパスとして、伝統的な教育研究の温（ディシンプルン）を基礎としつつ、学術的調和を核に大学内に及ぶ教育と研究を行う。

駒場地区キャンパス

全学の学術的緩和教育を受け持つほか、異なるディシンプルンの相互作用や社会との交流を基本として、学術的な教育と研究を行う。

柏地区キャンパス

教育研究の新たな展開の場となる新キャンパスを建設する。ここでは、成熟度の異なるディシンプルンを配置し、多様性を融合しの知的冒険を試み、新しい学問領域の創造を目指す。
体制紹介

東京大学は全国に50を超える施設を持ち、総人数4万人を超える機関である。大学の環境安全衛生の観点として、環境安全本部が組織されている。環境安全本部は複数の部局からの教員と、事務職員によって構成されており、全学的環境安全衛生管理の企画立案、計画立案、指導、教育、広報活動を行っている。環境安全本部の下、各部局では部局ごとに安全衛生管理室が形成されており、個々の研究部署での環境安全衛生管理はこの部局安全衛生管理室の指導のもと行われる。

環境安全組織体制表

- 環境安全研究センター
 「自ら出した実験廃棄物は自ら処理する」という東京大学の実験廃棄物処理を支える理念のもとづく基幹業務として実験廃棄物処理を行っている。廃棄物処理業務の上流にあたる化学物質管理システムの実現、及び「環境安全学」の構築に取組む。

- アイソトープ総合センター
 1.「全学の新規放射線接続者の教育訓練を行う」
 2.「新規の放射線接続業務を総括する」
 3.「センターの大規模アイソトープ利用施設・設備を学内研究者および学生実習の利用に供する」
 ことを目的として機能し、全学の放射線接続者の管理や放射線接続施設の充実、全学の放射線接続組織の充実機関への窓口としても成果を上げてきた。
 さらに大学の放射線接続管理に関するこれまでの実績や経験を活かし、「全学総合安全管理体制」の構築を目指している。

- 保健センター
 一般健康診断、特殊健康診断、健康管理、健康教育、健康相談、各科診療、救護活動、健康診断書の発行などを通じて、学生・教職員の身体的・精神的健康の維持管理を支援している。学生・教職員の明日の健康をえるため、先進的な調査・研究に取り組んでいる。

- 工学系研究科原子力国際専攻
 1. 核燃料物質等の使用に係る手続き
 2. 研究用X線装置及び電磁の使用にかかわる手続き
 3. 学内一般排水中の放射能測定（万一の事故時）
 4. 体内汚染測定（万一の事故時）
 5. 学生実習を含む教育訓練の実施
 6. その他（管理機器の対応、異常時の対策等）
 以上の項目について全学放射線接続業務を行っている。
平成17年度実績

初年度の環境報告書ということもあり、今まで東京大学で行ってきた教育・研究活動の中で、環境にかかわるような活動を行っているか、どのようなデータがあるかを把握することから始めた。本報告書は次年度以降の目標を定める上で、現状を認識することを主な目的としている。平成17年度の主な実績は下記の通りである。

主な実績例
・省エネルギーの取り組み
・化学薬品の管理
・PRTR
・環境物品等の調達実績
・一般廃棄物の回収、処理及びリサイクル
・特殊な廃棄物の回収と処理
・環境に係る教育研究活動
・環境安全に係る対応

今後の目標

環境報告書を公表後、読者からのアンケートやステークホルダー（利害関係者）との環境コミュニケーション（下記参照）を通して、東京大学としてどのような情報の公開や活動を望まれているのかを把握し、反映することで大学の環境に関する活動を促進する。この実績を一年ごとに環境報告書を公表することで環境マネジメントシステム、すなわちPDCAサイクル（下記参照）の確実な運用を目指す。

● ステークホルダーとの環境コミュニケーションとは
持続可能な社会の実現に向けた東京大学の教育研究活動を幅広いステークホルダーの方々に知っていただき、日々の活動にフィードバックしていくため、環境報告書などで情報を伝えると共に皆様のご意見・ご指摘を反映することで双方向のコミュニケーションを形成すること。

● 環境マネジメントシステム・PDCAサイクルとは
P（計画）
環境理念・環境基本方針に沿った行動方針を定めると共に現状把握し、社会が望むことを考慮しながら目的・目標・実施計画を立てる。
D（実施）
様々な取り組みや活動を通じて目的・目標・実施計画の実現に努め、そのパフォーマンスを測定し、記録する。
C（確認）
記録から結果と目標を比較して分析を行い評価する。
環境報告書はCの役割を果たす手段のひとつである。
A（見直し）
目的・目標・実施計画の達成状況から、環境マネジメントシステムの運用についての見直しを図る。
省エネルギー対策

「京都議定書」、「地球温暖化対策推進法」の施行、及び、都条例に基づく「地球温暖化対策計画書」の提出等、環境対策に関する法規制がその端緒に立っている。また「エネルギー使用の合理化に関する法律」により、省エネルギーは当然のこととなっている。東京大学では法に則り二酸化炭素排出量の削減、省エネルギー化を進めているが、単にそれらの規制に従うという観点からみた管理、科学を通して環境に携わる組織体として主体的に環境問題に対応していく、省エネルギー計画は都市環境、地球環境への積極的寄与を目的とする。

エネルギー投入量 3,315,369 GJ

東京大学の活動に導入されたエネルギー量は電力、都市ガス、A重油の年間使用量から算出している。特に電力が占める割合は大きく、総エネルギー量の約8割を占めている。これは一般家庭の使用量に換算すると約7万8千世帯の電力を消費していることになる。エネルギー使用量は建物面積の増加に伴い、年々増加傾向にあるが、面積増加率に比べ、エネルギーの増加は抑制されている。

平成17年度実績

<table>
<thead>
<tr>
<th>エネルギー</th>
<th>使用量</th>
<th>変換係数</th>
<th>GJ換算</th>
</tr>
</thead>
<tbody>
<tr>
<td>電力量(KWH)</td>
<td>282,328,169</td>
<td>0.00976</td>
<td>2,755,523</td>
</tr>
<tr>
<td>都市ガス(m³)</td>
<td>11,729,011</td>
<td>0.045</td>
<td>508,140</td>
</tr>
<tr>
<td>A重油(kl)</td>
<td>1,322</td>
<td>39.1</td>
<td>51,706</td>
</tr>
</tbody>
</table>

水資源投入量 1,437,000 m³

東京大学では水資源投入量の一部で中水（雨水、再利用水）、井水を使用している。また、新築、改修工事の際には節水タイプの器具等を導入するなど、節水に努めている。

主要5キャンパスのエネルギーエ投入量

主要5キャンパスの水資源使用量
省エネルギーの取り組み事例（平成17年度）

1. 省エネルギーポスターの配布
 省エネルギー全学キャンペーンの一環として実施した。（図1,2）

2. 夏季一斉開館の導入
 電力消費の大きい夏季に学内に協力を呼びかける一斉開館を実施した。

3. 週間電気予報の毎週配信
 天気予報から電力需要を予測し、学内に節電を強くアピールした。（図3）

図1 夏の省エネルギーポスター
図2 冬の省エネルギーポスター
図3 週間電気予報

温室効果ガス排出量 138,629tCO₂

平成17年度に提出した「地球温暖化対策計画書」に基づき、エネルギー消費量の低減に努めるため、新設設備を多く排出する機器の更新及び燃焼機器等のエネルギーの低減対策に積極的に努めている。

主要5キャンパスのエネルギー投入量によるCO₂排出量

<table>
<thead>
<tr>
<th>年度</th>
<th>電力量</th>
<th>都市ガス</th>
<th>A重油</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15年度</td>
<td>100,363</td>
<td>21,033</td>
<td>4,099</td>
<td>125,496</td>
</tr>
<tr>
<td>H16年度</td>
<td>107,310</td>
<td>24,941</td>
<td>3,685</td>
<td>135,937</td>
</tr>
<tr>
<td>H17年度</td>
<td>108,979</td>
<td>26,068</td>
<td>3,583</td>
<td>138,629</td>
</tr>
</tbody>
</table>

エネルギー効率の実施例
東京大学ではエネルギー使用量の多いボイラに対して保冷対策を実施しており、ボイラ表面やバルブからの放熱を抑えていている。
Section 3. 環境・安全管理の取り組み

環境物品等の調達実績の概要
（平成17年度）

「国等による環境物品等の調達の推進等に関する法律（平成12年法律第108号。以下「法律」という。）」第8条第1項の規定に基づき、平成17年度における環境物品等の調達実績の概要を取りまとめた。

1. 平成17年度の経緯
平成17年度については、平成17年4月1日に東京大学における「環境物品等の調達の推進を図るための方針（調達方針）」について策定・公表し、これに基づいて環境物品等の調達を推進した。

2. 調達実績の概要
(1) 特定調達品目等の調達状況
①目標達成状況：調達方針において、調達総量に対する基準を満足する物品等の調達量は計画により目標設定を行う項目については、全て100%を目標としていたところであるが、物品等の調達はほぼ達成した。
②調達目標を達成できなかった理由等：物品等関係で調達目標を達成できなかった主な理由としては、前もって必要とされる機能、性質面等から、特定調達品目の仕様を満足する規格品がなかったことや機能、性能の必要性から判断の基準を満足しない製品を調達したことによるものである。
③判断の基準より高い基準を満足する物品等の調達状況：紙類、文具類等については、各品目にわたりおおむね判断基準より高い基準を満足する調達を行った。
(2) その他の物品・役務の調達に当たっての環境配慮の実績
①物品等の調達の推進に当たって、できる限り環境への負荷の少ない物品等の調達に努めることが必要とし、環境物品等の判断基準を超える高い基準のものを調達すること、また、グリーン購入法適合品が存在しない場合においても、エコマーク等が表示され、環境保全に配慮されている物品を調達することに配慮した。
②物品等の納品する事業者、役務の提供事業者、公共工事の請負者に対して事業者自らが、環境物品等の調達を推進するように働きかけた。
(3) 当該年度調達実績に関する評価
東京大学においては、全国各地に附属施設等を抱えており、当該施設における業務実施上の事情から、物品等の調達率が目標に達しなかったものも一部見られるが、当初の年度調達目標はおおむね達成していると認められる。
平成18年度以降の調達においても引き続き環境物品等の調達の推進を図り、可能な限り環境への負荷の少ない物品等の調達に努めることとする。

グリーン購入法
（国等による環境物品等の調達の推進等に関する法律）

グリーン購入とは製品やサービスの購入の際に環境のことをよく考え、必要性を十分に考慮し、品質や価格だけでなく環境へ与える負荷が小さいものを選んで購入することです。国等の機関にグリーン購入を義務付けるとともに地方公共団体や事業者、国民もグリーン購入に努めることで環境負荷の低減に努める事業者・機関から優先して製品やサービスを購入することとなり企業に環境負荷の少ない製品の開発を促し、循環型社会の形成を目的とした法律です。

平成17年度環境物品等の調達の推進を図るための方針
http://www.u-tokyo.ac.jp/fin/03/pdf/g01-1.pdf

環境物品の購入例
Section 3. 環境・安全管理の取り組み

化学薬品の適正管理

化学薬品は我々の生活に不可欠なものであり、東京大学でも研究のために多種の化學物質が日常的に使用されている。しかしながら、化学薬品は爆発・火災などの物理的危険や、人体の健康被害などの危険性を有しており、取り扱いには最善の注意が必要となる。大学内には多くの薬品使用がおり、安全な環境を守り、研究を行うためにも、これらの薬品類の適正管理は必須と言える。東京大学では環境安全本部が中心となり、各部局安全衛生管理室の協力の下、徹底した薬品管理が行われている。

化学薬品の管理状況

東京大学には27部局、約900の化学薬品使用研究室があり、1万を超える研究者が化学薬品を使用している。保管場所や保管の仕方については下記に示すような常識的な注意点の設置、堅固な保管庫での管理等についての指導、徹底が行われている。しかしながら、大学の特質上、個々の独立した多数の研究室を有し、人員の移動も極めて頻繁に起こる。また、保持及び使用する化学薬品は多種種類があり、適正な管理のためには多大な労力が必要となる。安全な管理や法令の遵守を全学的に行うためには個々の研究部署でのノート等を用いた管理では不十分である。特に、化学物質の管理及び管理促進法（PRTA制度）、毒物及び劇物取締法、消防法、労働衛生法（安衛法）、高圧ガス保安法などの関連法規を遵守のうえで管理・使用を行うためには、管理方法は法規に異なるため、キャンバス単位や建物単位、防火区域単位での管理など、個々の研究部署の枠を超えた統一的な管理が必要となる。

このような背景から、東京大学では研究部署での適正な化学薬品管理を支援し、かつ、単一の研究部署だけでなく、学科、部局、建物単位での管理及び大学全体での管理体制の構築を目的として、全学的な化学薬品管理システムの導入を検討する化学薬品管理システムワーキンググループが平成16年10月に立ち上がった。構成メンバーは、化学薬品を扱っている理系部署の教職員であり、全学規模のシステムの構築等について議論を重ねた結果、平成17年2月に現在導入されている薬品管理システム（University of Tokyo Chemical Registration Information System: UTRCRIS）の使用が開始された。
東京大学薬品管理システム UTR CIS

UTRICS は島津 SD 社の薬品管理システム CRIS を東京大学仕様にカスタマイズした管理システムである。サーバークビュータにより管理情報を一元管理するシステムであり、個々の化学薬品使用者は各研究部署にあるコンピュータに入力でそのサーバークビュータにアクセスし、薬品の入庫や使用記録を取ることができる。サーバークビュータのアクセスは東京大学の構内の施設からのみ許可している。これらの情報がサーバークビュータで一元管理され、機関全体での統一された管理形態が保たれる。

このシステムでは、化学薬品を使用している全 27 部局では各部署単位で部署管理者を決定し、研究室はその部署管理者の統括の下で管理を行う形になっている。個々の研究室でも管理者を決定し、学生を含めた各エンドユーザーを統括し、研究室全体の管理を行う形になっている。

UTRICS は試薬の入庫から出庫までを簡単に一本ずつの重量管理できるシステムであり、システム内には薬品情報データベースとして、200 万もの試薬メーカーにおける 80 万もの試薬データが内蔵されている。薬名に加えて、製品番号やバーコードデータ、容量、さらには毒物取締法や消防法、PRTR 制度などの法令情報も含んだ電子化された情報が登録されており、ユーザー自身はこれらの情報を元に簡単に薬品登録、かつ法令情報を得ることができる。また、薬品の在庫や、使用履歴の管理だけでなく、それらを踏まえて労働安全衛生法（有機物、特化法）、毒物取締法、消防法、PRTR 法、東京都環境保護条例、高圧ガス保安法などの法令にも対応した集計や、在庫確認ができるシステムとなっている。

薬品データは東京大学の施設データに基づき、保管場所や使用場所が特定される仕組みになっており、部屋ごとだけでなく、防火区画（消防法由来）ごと、建物ごとでの集計や在庫表示にも簡単に対応できるようになっている。このような一元管理された統一管理を行うことで、個々の研究室の枠を超えた管理を可能にしている。全学サイドで薬品の場所が特定できることから、火災などの災害時でも速やかに対応することができる。また、システム中で管理されている情報は、労働安全衛生法や消防法の作業環境測定のための情報や、取扱従事者の特殊健康診断の情報として活用している。システムをより使いやすい便利なものにするため、ユーザーからの意見も取り入れ、カスタマイズは現在も継続しているが、全学での統一管理のためには、どれだけ優れたシステムが導入されたとしても、ユーザー自身が化学薬品管理に対して高見識を持たない限り、適正な管理は行えるものではない。東京大学では、平成 17 年 4 月より、本郷、駒場、柏、白金の各キャンパスで計 19 回の UTR CIS の使用説明会と、10 回の意見交換会が行われ、システムの使用法に加えて、化学薬品の適正管理、統一管理の必要性と重要性に関して教育が行われた。その結果、平成 18 年 4 月現在、全化学薬品ユーザーのほぼすべてがシステムの使用を開始している。今年度以降も定期的な説明会が開催され、今後も管理の必要性と重要性を含め、説明会を行う予定である。

図 1 説明会の様子
東京大学薬品管理システム UTCRIS
University of Tokyo Chemical Registration Information System (UTCRIS)

■ 管理システムサーバー
 Webサーバー（負荷分散型）
 データベースサーバー（バックアップシステム）

試薬メーカー：200社以上
試薬データ：800,000以上
試薬データには、カタログ番号、容量などの情報に加えて、PRTRや毒性物、廃棄法などの情報も含まれている。

■ ユーザーのコンピューター

UTCRISのトップページ

入庫記録

出庫記録

使用記録

試薬の製品番号やバーコード番号を読み込むことで簡単に入庫できる。
試薬ごとに使用記録がとれる。
在庫量や使用量を元に法令に基づいた検査・管理が可能になる。
東京大学では年1回、すべての研究室に対し、化学物質の環境への排出量調査を実施しており、その集計結果をPRTR法に係る届出として提出している。本調査は単に数値を把握するための調査に止まらず、研究者に対し、化学物質の適正管理の再確認を促す機会となっている。

PRTR法は、第一種指定化学物質について年間で11以上、また特定第一種指定化学物質については0.5t以上の取り扱いがあったものが対象となるが、平成17年度PRTR法の対象となったキャンパスは、本郷キャンパスと駒場IIキャンパスの2事業所であった。

平成17年度PRTR届出

<table>
<thead>
<tr>
<th>化学物質</th>
<th>大気への排出量</th>
<th>事業所外への移動量</th>
<th>使用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベンゼン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トルエン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-ジメチルホルムアミド</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ジクロロメタン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クロロホルム</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>キシレン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アセトニトリル</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本郷キャンパス</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>駒場IIキャンパス</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRTR（Pollutant Release and Transfer Register：化学物質排出移動量届出制度）とは、有害性のある多種多様な化学物質が、どのような発生源から、どれくらい環境中に排出されたか、あるいは廃棄物に含まれて事業所の外に運び出されたかというデータを把握し、集計し、公表する仕組みである。（環境省「PRTRインフォメーション広場」参照）
安全衛生確保と環境への配慮

「安全衛生確保と環境への配慮」は東京大学で活動する全ての構成員の義務であり、責任ある事は言うまでもない。東京大学としても環境安全に関する適正管理とし、個人の責任の履行を助ける義務がある。東京大学では各種の講習会（環境安全講習会等）を実施し、化学物質の適正管理や構成員の安全衛生の確保を促している。また、定期的な排水監視により環境汚染を未然に防ぐ対策を講じている。構成員の健康面については作業環境測定により研究環境の安全性を確認し、健康障害の発生防止に努めている。

排水監視

都内および柏キャンパスに存在する東京大学の施設からの排水槽 28 施設については、環境安全研究センターによりその排水水質を定期的に測定し、監視が行われている。排水水質は基準値を越えていない。また、万一汚染した際の汚染の原因調査と再発防止を徹底するシステムが確立している。再発防止に係る技術的なアドバイスは環境安全研究センターで行われている。東京大学ではその大部分が実験室の排水系統と同様の生活排水の系統が共用になっているため、実験室の排水の制御、管理に特に留意している。柏キャンパスでは、環境配慮設計がされており、排水系統は実験室と生活系に分離され、実験室排水については各所に pH のモニター、警報装置が設置され、排水の汚染状況の常時監視が行われている。

作業環境測定

学術研究、教育の目的で、実験室では、様々な装置、器具、試薬類を用いた教職員と学生による実験が繰り返されている。東京大学においても、実験室における構成員の健康確保を目的として、労働安全衛生法に基づく作業環境測定（実験室の室内空気の分析）を年 2 回実施しており、良好な作業環境を確保している。

環境安全講習会

東京大学では、学内での教育、研究に関わる全ての構成員を対象に、年間 11 回（動南沙 1 回、柏 2 回、英語 1 回を含む）、大学での化学物質の取扱い方法や安全管理についての講習会（環境安全講習会）を実施している。講習会は実施し、試験に合格すると「東京大学環境安全講習修了証」（略称：東京大学環境安全講習修了証）が与えられる。それにより構成員の化学物質取り扱いに関する適正な知識を習得させると共に、修了証を持たない場合は廃棄の処理を環境安全研究センターニに依頼することが出来ない等、取り扱う構成員にとっては必要の講習会となっている。
環境安全研究センター

研究・教育・医療活動に伴う有害廃棄物を回収し、処理し、最終処分をするのは、環境安全研究センター（以下、センター）が設立時から持っているサービス機能のままである。有害物を扱うすべての人は、自分の責任で廃棄物を分別し、その含有成分を実験廃棄物処理依頼伝票に記述し報告し（マニュアル）、所定の日時・場所に運ぶ義務を負う。また、PRTR法第1種指定化学物質に該当する廃棄物を排出する場合には、所定の登録票の提出も義務付けている。センターはそれを回収し、安全に処理する。発生者責任とセンターでの集中処理の組み合わせは、東京大学のシステムの特徴である。

実験廃棄物などを対象とした定期回収では、月・水・金曜日に各部局に出向く。また排出量の極めて少ない部局には、必要に応じて回収作業を実施する。一方実験廃液など排出する場合は、排出者に対し、センターが定めた分別収集区分に従うことを義務づけている。分別収集区分は、センターに設置されている実験廃棄物処理装置で、廃棄物が安全かつ確実に処理されることを前提に定めてある。また、収集区分ごとに大分類（10Lと18Lの2種類）と色彩の異なる指定ポリ容器を制定している。不要になった試薬類は、排出者から廃棄の要望がある方には回収作業を行っている。危険物が多いため、回収には、センター教員と排出者が立ち合い、1本ずつ試薬の内容の確認をしている。また、ラベルの欠落などにより中身のわからなくなった不明試薬の分析業務も行う適宜処理を行っている。

http://www.esc.u-tokyo.ac.jp/

実験廃棄物回収実績

有効廃棄物、廃棄試薬回収実績
Section 3. 環境・安全管理の取り組み

特殊な廃棄物の回収・処理

水銀、PCB、アスベストなどの実験材料・実験器具に使われるだけでなく、日常生活にも広く使われてきた。例えば、水銀は乾電池、蛍光管に、PCBはトランス、ノンカーボン製写真用、アスベストは建築（断熱材）等に使用されている。東京大学では、これらの対策に早くから取り組んできた。PCDの管理、アスベスト除去・飛散防止対策等について、部局に助言し、状況に応じてチェックを行っている。

公害は産業、有形物は理工系と考えられがちだが、全ての人の生活の中に環境に負荷を与える行為が存在すると考えることが地球環境での環境問題を考える上では必要である。もちろん、大学も例外ではない。

水銀

水銀を含む実験廃棄物だけでなく、使用済み乾電池、蛍光管などを年2回回収し、北海道の旧水銀鉱山（イトムカ）に送り、金属水銀を回収するシステムを作りあげ、昭和52年から実行してきた。しかし、水銀を含まない乾電池（マンガン乾電池、アルカリ乾電池）を生産する画期的な技術が生み出され、「無水銀でも回収を妨げるべきか否か」新たな検討が行われた。その結果、当面は水銀含有乾電池と無水銀乾電池とに分けて、従来通りイトムカに送ることになった。現状ではまだ水銀乾電池が含まれている可能性があること、水銀以外の金属の資源化が行われているためである。乾電池問題は、環境対策の重点が、有害物対策から資源の回収に移されならばならないことを、はっきりと示している。

PCB含有廃棄物

PCBは、廃棄物処理法で特別管理一般廃棄物、特別管理産業廃棄物に指定されており、重要な管理が必要である。ようやく法令等整備され処理の道筋が立ってきたが、処理が実に行われるまでは厳重に保管することが求められている。重要な保管をいつよう確実にするため、ノンカーボン紙に続き蛍光管の安定器についても、平成16年度より全学一括管理を始めた。その他のPCBについても順次全学一括管理の方向で検討している。

実験系プラスチック

実験系プラスチック廃棄物のうち、感染性廃棄物（感染性病原体が含まれ、若しくは付着している廃棄物又はこれのおそれがある廃棄物）と、そうでないものがある。東京大学では、たとえ感染性でなくても、感染性廃棄物との区別がつかない廃棄物（擬似感染性廃棄物）については、混乱を避けるため、感染性廃棄物として処理を行う。

フロンガス

オゾン層の破壊の原因である特定フロンは現時点では使用が禁止されているが、過去に実験などで使用して残ったものは研究所でポンベや缶に保存してきた。そのようなお処理は平成12年度に回収し、処理を行った。
廃棄物管理とリサイクル対策

循環型社会形成推進基本法に基づき、廃棄物・リサイクル対策の優先順位として、発生抑制（リデュース：Reduce）、再使用（リユース：Reuse）、再生利用（リサイクル：Recycle）、熱回収した後に、適正処分すると定められている。循環型社会形成のために東京大学においても3R（リデュース、リユース、リサイクル）を実践する廃棄物管理を行い、教育機関として将来世代に環境教育を実践的に行う必要がある。

東京大学における廃棄物管理
東京大学では環境安全対策のために昭和50年に「環境安全研究センター」を設立し、「自分で出した実験・研究に使用した有様廃棄物は自分で処理する」という廃棄物処理の基本的な考え方、原点処理の原則に基づき、実験廃棄物・有様廃棄物を発生源で分別し、効率的に行っている。廃棄処理に加えて、環境全体をマネージメントするという役割を担い、東京大学環境安全委員会（当時）と環境安全研究センターが中心となって「廃棄物対策」を行ってきた。東京大学で発生する廃棄物を分類すると図1の様になる。

生活系廃棄物への取り組み
東京大学における生活系廃棄物へのリサイクルの取り組みは平成3年度に紙、飲料缶の発生量の把握とリサイクルの試行により始まった。平成6年度に「東京大学ごみ宣言」を出し、全構成員に「環境安全指針に基づき」を配布、ごみの分別の徹底とリサイクルの推進、ごみの減量化を目指した。分別を効率的に行うためには、個人の意識改善に加えて、分別しやすいシステムが必要となり、排出物（発生段階）が徹底した分別を行い、これまでごみとして処分していたものを資源として再利用するシステムを検討した。「紙」を5種類に、「紙以外のごみ」をカートを使用し6種類に分別し、収集する時にカートごとに計量し、廃棄物を管理する。このシステムを実際に導入し検証を行い、平成11年度に本館キャンパス全体にカートごみ集積所が整備され、以後分別収集を実施している。生活系廃棄物の分別方法を図2に示した。

ごみの資源化（リサイクル）を進めた結果、ごみとして処分する量を大幅に減量することができた。図3に本館キャンパスにおけるカートごみ分別収集導入後の生活系廃棄物排出量の調査結果（図3）によると「紙以外のごみ」の排出量は導入前の平成10年度の排出量の30%に減量している。これにより、教職員、学生を含む全構成員が一斉になって廃棄物問題に取り組んだ結果であるとともに、カートごとに計量するため、排出量が把握できた結果である。これは「紙のリサイクル回収量」を加えて平成17年度に発生した「生活系廃棄物の環計」を図4に示し、本館キャンパスで排出される生活系廃棄物の総量のおよそ64%がリサイクルされていることがわかった。

今後の課題
現在排出している廃棄物を、どのように処理・処分するかを構成員に周知徹底を図り、「効率を最優先する使い捨て型の生活や研究形態」を見直す方向で期待改革し発生抑制につなげて行くことが今後の課題である。

図1 東京大学で発生する廃棄物

参考文献
横山雅子、帯川新「東京大学の分別収集—東京大学における参加型循環システム—都市と廃棄物」、33(5)、68～84(2003)
図2 生活系廃棄物の分別方法

紙ごみ

リサイクルされる紙ごみ
1. 新聞
2. コピー用紙類
3. 雑誌・報紙：カタログ・封筒・雑誌・書籍・果子箱・包装紙等
4. 段ボール
5. 個人情報 ビニール収納

紙ごみ以外

リサイクルされるごみ
1. 飲料缶
2. ガラスびん
3. ペットボトル
4. プラスチック類

リサイクルされないごみ
5. 可燃ごみ：茶殻
生ごみ
割り箸等
6. 不燃ごみ
・金属
・ガラス破片
・アルミホイール等

図3 カート方式導入前後の排出量比較（本郷キャンパス）

図4 生活系廃棄物の組成（平成17年度 本郷キャンパス）

不燃ごみ 33.2%
可燃ごみ 46.9%
リサイクル可能ごみ 10.8%
プラスチック類 9.8%
ペットボトル 2.3%
ガラス破 2.0%
飲料缶 2.1%
高性能固体高分子形燃料電池のシステム設計

化学システム工学専攻 山口（猛夫）研究室

未来の発電システムのひとつ、燃料電池の総合的開発研究をしている化学システム工学専攻。地球の温暖化、そう遠くない将来、必ず訪れるであろう資源の枯渇を見据え、燃料電池による新しいエネルギー社会を提案する。

燃料電池開発の現状と未来
地球温暖化防止、持続的発展社会構築のためには、新しいエネルギー社会の構築が必要となっている。燃料電池は、水素など燃料の化学エネルギーを直接、電気エネルギーに変換できるため、小型・低温でもエネルギー変換効率が高く、未来の発電システムとして期待されている。中でも固体高分子形燃料電池は常温付近で操作できるため、小ささのユニークとして発電でき、携帯用電源、自動車用電源、家庭用電源として注目されている。

さらに、高性能で燃料電池の出力電圧を向上できれば、ポケットに入る程度でもエネルギー変換効率70%以上の技術（自動車：約15%、火力発電：40～50%）と比較して同じ量の仕事をしても排出二酸化炭素量を大幅に減らすことにも夢ではない。しかししながら、燃料電池の開発は複雑な機能材料が組み合わさっており、高性能燃料電池開発の研究は困難を極めていている。

システム設計法とナノテクによる新規燃料電池開発
化学システム工学専攻では、燃料電池材料をシステム的にとらえ、膜や触媒の機能と、そのナノ構造が密接に関与している電池性能を発現する複雑な燃料電池の中で、分子レベルでの問題点を明確にするところに成功した。また、問題部分の性能向上に様々なナノテクノロジーを駆使して、新規な電極層や電解質膜などを検討しており、燃料電池の心臓部の開発・改良に成功している。具体的には、数十ナノメートルの微細構造の持つポリマー電解質を充填すると、細孔中でのポリマーと水の状態が通常では考えられない構造を示すことを発見し、細孔フィリング膜を提案・開発することに成功した。また、触媒層中では、カーボン触媒担体に電解質ポリマーをグラフト重合する新規手法を提案し、ほとんどどの白金触媒を有効に利用できるナノテク技術を開発することにより、高価で希少な白金の使用量を3分の1程度に抑制している。これらの技術は、従来の燃料電池性能を格段に向うコストダウンする技術として、実用化研究も進められ、東京大学から世界に広まっていている。新規材料開発だけでなく、全体システム研究を組み合わせた燃料電池の総合的開発研究を行っている。さらに次世代用の酵素を用いたバイオ燃料電池の開発も行っている。

まだまだまだ改良を重ねる必要があるが、地球温暖化問題や資源枯渇問題を解決する夢があり、世の中を大きく変える可能性のある技術である。

URL http://www.chemsys.t.u-tokyo.ac.jp/chemsys/labs/takeo/
バイオマスエネルギーの研究

化石燃料の中で、石油と天然ガスは21世紀中には枯渇することが予想されている。化石燃料の資源制約と化石燃料使用による温暖化ガスによる地球温暖化の環境問題が立ちふさがっているが、化石燃料に替わる新たなエネルギーにしても経済性を考慮しなければならない。このような状況を打破するひとつの有力な対策は、再生可能エネルギーの利用である。再生可能エネルギーの中で、バイオマスは適切な管理により再生的に利用できる唯一の有機性資源である。

図1に示すように、木材などのバイオマスを、燃焼して利用した最終的に大気中に二酸化炭素として放出しても、同量の二酸化炭素を再植林などにより光合成で固定する限り、大気中の二酸化炭素濃度には影響を与えない。この特性をコーポーナイタラルと呼んでおり、この循環の中で化石エネルギーに依存しないエネルギーが生産されるので、その分だけ化石資源の未来の二酸化炭素を削減できることになる。バイオマスが他の再生可能エネルギーと比較してユニークなのは、バイオマスが有機性（炭素質）であることで、電気や熱以外に化学品や輸送用燃料を直接製造できることがある。つまりバイオマスを循環的に利用すれば、化石エネルギーのすべてに世界地球温暖化対策に寄与でき、持続的な社会の実現の一助になることができる。

また、木質バイオマス、畜産系バイオマス、有機物の混元関係、食品廃棄物、海藻などにエネルギーを利用できる（図2）。当研究室では、生化学的なバイオマスエネルギー変換技術の研究開発や、新しいバイオマスエネルギーのシステムの解析などを行っている。農学生命科学研究科では「農学におけるバイオマス利用研究フォーラムグループ」を開講している。バイオマスの導入・普及に関しては、単に技術だけではなく、環境、社会制度、地域経済、物流、国際関係などとも深く関わりあっており、産学官民の連携を目指して取り組んでいる。

http://www.bme.en.a.u-tokyo.ac.jp/

図1. バイオマスの循環利用システム

図2. バイオマスエネルギーを活用した循環型社会のイメージ
環境配慮型の化学実験室の紹介

化学専攻有機化学講座 物理有機化学研究室

理学系研究科は、6つの専攻と9つの附属施設・センターから構成され、宇宙・地球から物質、生命、環境まで、基礎科学的な観点に立ちながら、広い範囲の研究が展開されている。ここでは理学系研究科の一研究室が取り組んでいる、周辺環境にも最大限配慮した最先端の実験施設について紹介したい。

理科系の大学の研究室で、もっとも周辺の環境に直接的影響を及ぼす可能性があるのが、化学系の研究室である。ここでは、新物質の合成やその性質の解明などに関する研究を進め、ときには人体に有害である試薬を使う実験を行う。有害物質は、学内で厳密に管理された実験廃棄物の回収システムによって処理される。研究者のモラルと、回収・処理を担当している環境安全研究センターの連携プレーにより、これらの廃棄物は事実上周辺の環境への影響はないと考えられる。一方で、処理が難しいのが空気に乗って移動してしまう揮発性の化学物質である。実験室で発生した揮発性物質は、ドラフトチャンバーと呼ばれる排気装置で実験室から除去され、建物の屋上に配備された排気口からスクラバーと呼ばれる設備で洗浄した後に外気に排気される。外気へはスクラバーが機能していれば大きな影響はないと考えられるが、建物の中を仕事をしている人たちは必ずしも安全とはいえない。例えばドラフトチャンバーの排気量が不足していたり、別のドラフトチャンバーの排気量が相対的に高ければ排気量が下がり、建物内部に悪臭が漂う。このような問題は化学系の研究棟ではこれまで時折起こっていた日常的な問題であったが、最近になって根本的な解決を試みた研究グループがある。

化学専攻物理有機化学研究室中村栄一教授が率いるERATO中村活性炭素クラスタープロジェクトでは、完全に法令に準拠したドラフトチャンバーを実験室に導入した。ドラフトチャンバーは実験室の排気をするだけでは不十分なく、排気される空気の量に応じて給気を行わなければならない。そこでそれを、建物内に排気が逆流して、悪臭が建物内部に立ちこめることを防ぐ。新しく導入されたドラフトチャンバーでは、研究者の安全を保ちながら、周辺の環境に配慮した排気装置が取り付けられている。給気・排気はコンピューター制御され、排気には活性炭ユニットによる排気ガスの吸着処理が施され、周辺の環境に対する最大限の配慮がなされている。このようなハードウェアに立脚した環境安全への配慮に加え、中村グループでは月に一度、安全衛生会合を開き、研究室における安全な研究の遂行と周辺環境への配慮を常に心がけている。このような研究スタイルは、必ずしも理学系研究科の現状ではスタンダードとはなっていない。しかし、今後私たちは研究者の衛生上の安全と周辺の住民の安心を基にしながら研究を進めていく必要がある。ここで紹介した事例が、近い将来、理学系研究科のスタンダードとなる日が遠からず訪れることを切望している。

URL http://www.chem.s.u-tokyo.ac.jp/~common/
URL http://www.chem.s.u-tokyo.ac.jp/~erato/index-e.html

1. 設置 給排気システム全景
2. 活性炭式排気システム
3. 構内システム
4. 実験室のドラフトチャンバー
タミフレの完全人工合成 —地球環境を汚さない医薬合成を目指して—

分子薬学専攻 医薬化学講座 有機合成化学教室

薬学系研究科では、医薬リードの創製から新しい医薬合成法の開発、さらには医薬の適正使用をし目を有として、生命に関わる生物及びその生体との相互作用に関する基礎研究を中心に研究を行っている。ここでは、最近、薬学系研究科の有機合成化学研究室（柴崎正勝教授）で達成された抗インフルエンザ薬・タミフレの人工合成について紹介する。

21世紀の医薬合成

人類の健康を守る医薬品は、決してはじめからそこにあるものではなく、多くの研究者の長年にわたり地道な基礎研究と、医療従事者や患者をぶくめた多くの人々の協力、さらには多額の資金投入によってはじめて私たちの手に入り、人類全体の財産であるということができる。例えば、鳥インフルエンザの変異によって将来的に問題あることは不可能であろう新型インフルエンザの発生は、現在、人類にとって最大の脅威のひとつだが、抗インフルエンザ薬・タミフレはこの新型インフルエンザに対する唯一の効果があると考えられ、世界各国で備蓄が始められている。タミフレは、アメリカのベンチャー企業、インフルエンザウイルス感染の分子レベルでのメカニズムから論理的に精密な分子設計を経て開発された医薬で、そこには人類の英知が集約されている。

タミフレを全世界規模で供給するためには、最先端の有機合成化学の技術が必要となる。しかしながら、現在の有機合成化学では100%の収率で目的物のみがとれるとはほとんどなく、不必要な生成（副生成物）が必ず生じてしまう。これらの生成物は、多くは汚染地球環境を汚していく。タミフレのように人類を守るはずの医薬品を、トランスペア以上の規模で合成を行うときに生成するごみは、皮肉なこと

21世紀の有機合成化学は、地球環境を汚すことなく有用な医薬品を世界的に供給できるレベルまで発展していく必要がある。

独自の反応開発に基づいたタミフレの合成

私たちの研究室では、天然に豊富に存在する糖を用いて、完全に独自の触媒を用いて、従来は合成の難しい化合物を、副生成物の量を極力抑え、極めて容易に合成できるようになることが分かってきた。今回、開発した触媒を用いることで、タミフレの新合成法を確立した。私たちの方法では、従来用いられてきた手法の困難な原料から合成を始める必要なく、非常に単純で入手容易な原料から、しかも副生成物を極力出さずに合成し始めることができる。私たちの基礎研究の成果が、地球環境にやさしいタミフレの合成法へと発展していくことを夢見て、日々研究を継続している。

http://www.f.u-tokyo.ac.jp/~kanai/index.html

タミフレの新合成法

原料
触媒
抗インフルエンザ薬
タミフレ
鳥インフルエンザと環境

感染・免疫大部門 ウイルス感染分野

鳥インフルエンザ（H5N1）が、アジアのみならずヨーロッパ、アフリカへと広がった。このウイルスが感染した鶏は100%死亡する。しかも症例は少なく本来感染しないはずの人間にも感染し、半数以上が死亡している。今のところ、ウイルスは人から人へ伝染する力はないが、もしウイルスが変異しその力を獲得すれば、最強の殺人ウイルスが誕生する。研究室では、来るべき非常態態に備え、ワクチン開発などの研究を進めている。

鳥ウイルスが感染する環境

インフルエンザ・ウイルスを人工合成する方法を用い、H5N1ウイルスが人に感染するメカニズムを解析した結果、鳥ウイルスの遺伝子にわずかな変異が導入されるだけで、ウイルスの哺乳類への感染が高まるという実験結果が発表された。この結果をもとに、プルコガニ、インドネシア、中国の国立研究機関、大学等が協力して、人、鶏、野鳥、哺乳類などから分離したH5N1ウイルスの遺伝子解析実験を実施、ウイルスの変異をはさみこみ、ウイルスの変異をなめるモニタリングしている。また、鳥のウイルスは人間の鼻の細胞よりも肺の細胞に感染しやすい、つまり、大量のウイルスを吸い込んだ場合に限り偶発的に人に感染する。中国南部やインドネシア諸国の農村部では、鶏、あなたが鴨の鳥と同居するような生活様式があり、市場では生きた鳥が売買されており、鳥インフルエンザの知識が乏しく、ウイルスに感染した鳥の接触機会は少なくない。鳥ウイルスに感染したほとんどの人はこういった環境下にいた。つまり、感染した鳥と接触する環境を排除することが、人がウイルスに感染しないための最善策である。また、ウイルスに感染した野鳥がウイルスを運んでいる可能性が考えられる（図2）。日本においても、空からウイルスが降ってくるかもしれない。少なくとも、病気や死亡している野鳥には触らない方がよい。しかし、貿易や輸出入など人為的な方法により感染した鳥が持ち込まれ、その土地の鳥に感染が拡大する可能性が圧倒的に高い。実際に、中国から日本に輸入されたアヒルの冷凧肉からH5N1ウイルスが分離されている。

食を介した感染

それではウイルスに感染した鳥肉や卵を介して、人はウイルスに感染するのだろうか。実際にタイでは、ウイルスに感染した鶏を鶏卵として与えられたトラが死亡したが、ウイルスが胃を通って腸の細胞から感染したのか、鈍かにこすりつけた鼻を通して呼吸器の細胞から感染したのかは不明である。仮に鶏肉や卵の殻、内部にウイルスが入っていたとしても、胃の酸性環境でほとんどのウイルスは不活化するし、腸の段階で鶏肉の内部を70℃以上にするように加熱すれば100%死滅する。つまり「鳥インフルエンザ・ウイルスが食環境を介して人に感染することはない。」というのが、WHOおよび内閣府食品安全委員会の統一見解である。なお、私たちは、バイオセイファリーレベル3の実験室で病原性の高い鳥インフルエンザの研究を行っている（図3）。この実験室は病原体を高度に封じ込め、構造であり、病原体が環境中に漏れる心配はない。抗ウイルス薬やワクチン開発などの研究はすべてこの中で行われている。その成果が、人類の生活環境から鳥インフルエンザという文字を排除するのに役立つことを願う。

出典：http://www.growingenius.com/firstpage.htm
近年、カスピ海は有機塩素系化合物や放射性核種などの汚染によって環境が著しく悪化し、1997年と2000年にはそれぞれ船数脚のアザラシが大量に死亡し、ステンバーゼ・ウイルスやインフルエンザ・ウイルスに感染していることが明らかになった（図1）。私たちの調査で、ウイルスに感染した海岸に打ち上げられた死亡個体からは健康な個体の数倍から十倍の有機塩素系化合物が検出された。同時に、カスピカイアザラシがA型とB型のインフルエンザ・ウイルスに感染していた。A型とB型のインフルエンザ・ウイルスは、ヒトの世界では突然変異を繰り返すことで自然界での確率は難しいが、組織的に保存されている既存のウイルスと比較することで同定が可能になった。また、カスピカイアザラシは1979年にタイのバンコクを中心に世界中に広がったヒトのA型インフルエンザ・ウイルス（A/H3N2/Bangkok/79）に感染していた。カスピカイアザラシは、おそらく約20年前にヒトからこのインフルエンザ・ウイルスに空気感染したのであろうと推測される。将来、このウイルスがアザラシからヒトに空気感染する可能性もあり、その動向を監視していくことが大切である。

環境の悪化が深刻なバイカル湖や北極海のアザラシについて調査したところ、バイカルアザラシはA/Bangkok/1/79（H3N2）とA/H3N2（ヒト）のA型インフルエンザ・ウイルスに、カスピアザラシはA/H1N1（ヒト）のA型インフルエンザ・ウイルスに感染していた（図2）。さらに、北極海に生息しているインフルエンザ（標本数：34、感染率：5.8%）やミンククジラ（標本数：140、感染率：5%）からもA型インフルエンザ・ウイルスの感染例が見つかった。

以上のことから、野生のアザラシやクジラは、程度の差こそあれインフルエンザ・ウイルスに感染しており、有機塩素系化合物などの有害化学物質に汚染され、抵抗力を低下した個体では感染死を引き起こすことが予想される。したがって、自然環境の管理・保全を実施し、感染死を防ぐシステムを構築していくことが不可欠である。私たちの研究から、ヒトは自分たちの世界だけで物事を考えて対処するのではなく、（1）ヒトと野生動物との関係、（2）インフルエンザと野生動物の関係、（3）インフルエンザのヒトへの感染経路の情報、を正確に把握して、地球上の野生動物との共存を目指して、総合的な調査・監視体制を推進することが大切ではないだろうか。

https://ccplan.orl.u-tokyo.ac.jp/miyazaki/index.jsp.htm
我々の研究室では、酸化チタン光触媒反応を利用した環境浄化・改善システムの研究開発に取り組んでいます。酸化チタン（TiO₂）は、白い粉末で、塗料、颜料、化粧品などに広く使われている安全な物質である。この酸化チタンに太陽光などに含まれる紫外線が当たると、その表面で二つの反応が起きる、ひとつは有機物をCO₂まで酸化分解できる反応（光誘起分解反応）で、もうひとつは、非常に水に溶けやすく分解する反応（光誘起水反応）である。これら二つの反応を利用すると、抗菌・空気浄化・セルフクリーニング・防藻などの効果が得られ、建物材料を中心に20数種類がすでに製品化されている。酸化チタン光触媒反応による効果は、洗剤などの剤を使わず太陽光と雨水があれば得られる点で、環境に優し、持続可能な社会に適したものです。我々の研究室では、さらにこの光触媒と自然エネルギーである太陽光を利用して環境改善・浄化に利用しようと、VOC（揮発性有機塩基化合物）に汚染された土壌の浄化（図1）、農業生産から排出される農業廃棄物の浄化・光誘起水反応を使った建物冷却・省エネ（経済省＝NEDOプロジェクト）などのシステムについて研究開発している（図2）。研究成果の一部は、例えば、環境をテーマとした「愛・地球博」において、建物冷却・省エネシステムが試験的に利用されるなど、一定の評価を得ている（図3）。

図4. 光触媒反応による自然循環型環境浄化技術

大量消費

汚染物質 + O₂

光触媒反応

光合成（クロロフィル）

CO₂ + H₂O

有機物 + O₂

燃料・廃棄物・発電

建物冷却・省エネシステムの実証試験建物

図1 土壌浄化システムの実証試験

図2 建物冷却・省エネシステムの実証試験建物

図3「愛・地球博」での使用例
環境調和型新キャンパス

平成11年開校の柏キャンパスは、今も建設や外構の整備が続いている。研究棟はほぼ完成し、教員、学生併せて利用者が2,000人を超えているが、一方で駐車場や食堂などの施設・緑化整備をまだ途中段階である。しかし、その計画には確実に環境に対する配慮が含まれている。

今回は、柏キャンパスで特徴的な緑化と水に対する配慮について説明する。柏キャンパスは、場のないキャンパスを心がけ、東西の層状の土地利用計画を行い、積極的な敷地内緑化を行っている。中でも最も特徴的のは、キャンパス周囲は関展開するユニバーシティーグリーンで、近年、緑化と景観確保のための樹木種植が少なくなく、その地域とともに存在した樹木を植えることが、昆虫や鳥などの生物への影響も少なく、地域の環境に共生する考え方にあるとされている。これに基づき、東側半分では、これまでキャンパスの敷地にあった木々を移植し、柏市周辺のもとととの森を再構築している。

もちろん、他の場所にもケヤキなどの高木、アラシなどの中木、ツツジなどの低木を植え、豊かなキャンパスを演出したり、学生が中心となって、花や緑を植えるサークルも活動するなど、キャンパス全体を積極的に緑化しつつある。

もうひとつは、水に対する配慮である。キャンパス周辺では開発が進む中で、近くの「こんぶくろ池」という、この地域の個性的な湿地の環境が息づく池の水が、徐々に少なくなってきたことをうけ、地下水の維持に寄与するために、キャンパス内の雨水を積極的に地域の地下水に還元しようとしている。キャンパス全体は、南側が低くなるように緩やかな傾斜がついており、雨水は南端に集まるように計画されている。さらに南端には池がつくられ、集まった雨水は池にたまり、ゆっくりと地下水へ浸透していくことになる。これにより、周辺の地下水の流れを積極的に支援しようとしている。

この地域一体は豊かな自然が残る一方、つくばエクスプレスの開通に伴い、急速に開発が進むことが予想される。柏キャンパスは地域開発と決して無関係ではなく、むしろこの地域における開発に際して、環境との向き合い方を提示し実現していくリードシップを求められている。周辺の都市開発が急速に進められようとしている今、柏キャンパスは、都市と環境の共存のあり方を追求する実験場でもある。

http://www.k.u-tokyo.ac.jp/index.html ja
東京大学の演習林は日本全国に7箇所、約31,200ha。この森林は大学全体で排出するCO2の約半数に相当する量を吸収、大気CO2濃度の上昇を抑制し、地球温暖化防止に貢献している。

地球温暖化の原因となる大気中の二酸化炭素（CO2）濃度の上昇は、経済活動の発展に伴う石油や石炭などの化石燃料の大量消費と、熱帯林の消失によるCO2の大気への放出がその主な原因である。温暖化の進行を緩和するためには、化石燃料の消費量を抑えるとともに森林によるCO2固定・貯留機能を高める努力が必要とされている。国際的には、京都議定書として知られる温室効果ガスの排出削減の取り組みがなされ、日本は森林による吸収量を含めて平成2年当時のCO2排出量の6％を削減することを約束している。我が国は化石燃料の消費量増により、平成14年には平成2年よりも8％もCO2排出量が増大しており、より大きな削減が必要である。化石燃料がその原料の一部となっている電気は、東京大学における教育研究活動にとって不可欠であり、教育研究活動が年々増大活発化に伴って建物や研究機器が増え、電力の消費量も年々増える傾向にある。

一方東京大学には、北海道から愛知県までの7箇所に総計約31,200haの森林を管理する農学生命科学研究科附属演習林がある（図1）。演習林では、森林を教育研究のために整備するとともに、森林生態系を構成することなく森林資源を持続的に利用するための実践研究として年間約4万m3の木材を伐採・利用している。演習林の森林をCO2の固定・貯留機能の面から評価すると、森林がこれまでに光合成によって吸収し乾簡や枝、葉、根という森林バイオマスとして貯留しているCO2の総量が約803万トン、年成長量に相当する1年間で森林が固定するCO2量が約12.7万トン、年成長量から年成長量を引いて求まる森林バイオマスの年増加量に相当する森林のCO2貯留量の年増加量が約7.5万トンとなる（図2）。東京大学のキャンパスの中でCO2の排出量が最も大きい木村地区で1年間に消費される電気を生産するために排出されたCO2量（約7.1万トン）を上まわる量である。つまり東京大学全体とみるとき、教育研究活動によって排出されるCO2の半分以上の量を演習林の森林が貯蔵量を増やすことで、大気CO2濃度の上昇を抑制し、温暖化防止に貢献していることになる。また演習林の樹木によって貯蔵されているCO2の総量は、年増加量の100倍以上である。東京大学は1877年に創立され、今年で129周年を迎えた。おそらく創立以来東京大学が教育研究活動の中で排出してきたCO2を超える量を演習林の森林がバイオマスの形で貯蔵しているものと推定される。

東京大学もひとつの事業体として地球温暖化防止に貢献するためには、CO2を固定・貯留する機能をもつ森林の健全性を維持していくこと、また大学内での木材の利用を高めていくことも重要といえる。

http://www.uf.a.u-tokyo.ac.jp/
AGS (Alliance for Global Sustainability) の活動

AGS とは世界をリードする 4 つの大学（東京大学、マサチューセッツ工科大学（MIT）、スイス連邦工科大学（ETH）、チャルマーズ工科大学（スウェーデン））間での人間地球圏の存続を求める大学間国際学術協力のことであり、食糧と水、エネルギー、移動手段など人間地球圏の存続に関わる問題を、地域を超える視野を基に協力し研究している。また、政策提言を通じて研究成果を実現すること、教育面では様々な分野で持続可能な開発に挑戦できる知識と熱意を備えた次世代のリーダーを育てることも使命としている。

<table>
<thead>
<tr>
<th>平成 17 年度の主な活動</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 4 大学共同のフラッグシッププログラム「未来エネルギーへの道」の実施。</td>
</tr>
<tr>
<td>2. 学内から研究課題を募集し、採択されたテーマの研究活動を実施（フルプロジェクトテーマ 19 件、ショートプロジェクトテーマ 12 件）。</td>
</tr>
<tr>
<td>3. AGS 年次総会を東京大学主催でバンコクにて開催（3 月 19 日～22 日）、テーマは、“Global Sustainability and Regional Diversity” で、参加者約 160 名、東京大学からの参加者は 49 名。</td>
</tr>
<tr>
<td>4. 教育プログラム Intensive Program on Sustainability (iPoS) をアジア工科大学（AIT）と共同で開催、テーマは「食糧とエネルギー」で期間は 6 月 28 日～7 月 9 日。</td>
</tr>
<tr>
<td>5. 学生の AGS UTSOC (the University of Tokyo Students Community) 活動支援、三つのワーキンググループ（気候変動、水環境、サステイナビリティ教育）活動および COP11（気候変動枠組条約締約国会議）等への参加支援。</td>
</tr>
<tr>
<td>6. 企業向けの公開グローバル・サステイナビリティ・シンポジウムの開催（7 月 13 日）。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>今後の活動</th>
</tr>
</thead>
<tbody>
<tr>
<td>アジアの大学・研究機関とのネットワーク形成による ASA (Alliance for Sustainable Asia) の展開を進める。また平成 18 年度にはフラッグシッププログラムに「食糧と水」も加わり、助成企業をはじめとする学外との連携をさらに密にして活動していく。また、昨年度東京大学が中心となってスタートした「サステイナビリティ学連携研究機構 (R3S)」と協力して進めていく。</td>
</tr>
</tbody>
</table>

![AGS 年次総会における発表講演](image)

![iPoS での活動](image)

AGS の運営組織

- **AGS の国際活動**
 - 経営役員会 (AGB)
 - 中央役員会
 - 事務局
 - AGS-MIT
 - AGS-ETH
 - Chalmers

- **AGS の地域活動**
 - 大学内研究者による研究活動
 - 近隣国の大学・研究機関との連携
 - 地域の企業との連携
 - 政策ビジョン提言

事務局：国際連携本部
AGS 推進班
東京大学 AGS のホームページ：
教育活動

駒場キャンパスにおける環境学の教育

大学院総合文化研究科・教養学部 広域科学専攻 系統科学系環境分析化学研究室

都心にありながら自然豊かな駒場キャンパスは、主に教養学部の1,2年生が学ぶ。
環境安全への理解を深めるためにも、駒場での環境教育は重要な役目を担う。

21世紀の人類にとって最大の課題は環境問題である
との認識が広がってから長い。人間が放出した環境汚染物質が原因となり、地球の自然環境を破壊すること
がないように、国や企業も環境対策に多くの費用を
拠出するようになってきた。そのような状況の中で、
環境を学びたいという意欲を持った学生が増えてお
り、環境教育の重要性が増えてきている。

さて、東京大学に入学したすべての1,2年生は教養学
部に所属し、まず駒場キャンパスで教育を受ける。そ
の1年生向けの授業で「環境」と名の付く講義、平成
17年度の科目紹介で調べてみた。総合科目（選択）
には、「人間・環境」というカテゴリーがあり、その
中で「環境地球科学」「環境物質科学」「生態環境論」「社
会環境論」が講義されている。この他に「資源・エネ
ルギー工学」「人間・環境一般」という講義科目名で、
工学部、農学部等の教員が担当する環境学関連の講義
が講義されている。また、全学自由ゼミナールでは、「地
球大気環境科学」等、興味深いタイトルの講義が、諸
学部や研究所の教員により講義されている。このよ
うに、環境問題がひとつの学問領域にとどまらず、学際
的な問題となっていることがよくわかる。

さらに駒場には、カリキュラムの枠組みを越えて時宜
に適った問題を扱う選択科目として、主婦科目という
カテゴリーが用意されており、そこに、オムニバス形
式的のテーマ講義として、「環境の世紀XII～環境学の
スネ」が開講されている。この講義の関係者に運
には「環境三囲学」という学生サークルが大きく寄与し
ている。この講義に関連し、環境の世紀ゼミも
講義されている。まさに向学心に燃えた学生のニーズ
が生んだ講義と言えよう。

後期課程（3,4年生）や大学院の授業では、「地球環
境論」「環境経済論」「環境社会科学演習」「環境計画論」
などの専門的な講義や演習が数多く用意されている。
松尾教授の所属する広域科学専攻では、3年生対象の
「システム基礎科学実習Ⅰ」（選択必修）の中で、実際
に環境問題が顕著なフィールドの一例として足尾を取り
上げ、現地にて調査を行っている。旧足尾銅山周辺
での鉱毒公害の長期的影響に関する水質調査を行うと
ともに、亜硫酸ガスにより枯れた森林の復元や、山体
/植生崩壊に対する防災管理状況を学んでいる（図1
～3）。

駒場キャンパスは都心にありながら、自然環境が豊か
である。地球環境を学ぶに当たっても、まず身近な環
境を大事にしていく意識が大切である。逆に、化学
物質に対する無用な誤解を捨て去り、かつ、環境安全
に対する理解を深めるためにも、駒場における環境教
育は大変重要な役目を担っていると思われる。

http://dolphin.c.u-tokyo.ac.jp/~matsuo/index.html

図1 フィールド講義（足尾における森林の復元）
図2 フィールド講義（産業廃棄物としての鉱滓）
図3 フィールド講義（水質調査）
玉原国際セミナーハウスにおける数理科学研究科の教育活動

標高1200 mの有数地に新しくできたキャンパスは、それが玉原国際セミナーハウスである。ここでは主に数理科学研究科の研究集団、様々なセミナーの合宿、オリエンテーションが行われる他、地元の高校生向けの数学講座も開催されている。

東京大学に新しくできたキャンパス

東京大学玉原国際セミナーハウスは、群馬県沼田市上発知町玉原高原に平成17年7月8日に開所した。玉原高原の標高1200 mの有数地にあり、近くには、標高が500 m下の藤原ダムとの間で揚水発電を行っている玉原湖、水芭蕉の咲く玉原湿原、豊かなブナの林がある。セミナーハウス自体は、約1400 m²の木造2階建てで、山小屋風の美しい建物である。

自然を受け入れた環境で教育研究・地域との共生

セミナーハウスとは、大学の新幹線に沿った鳥取・関東からタクシー・バスで40～50分。セミナーハウス自体は、車を降りて玉原高原散策のハイキングコースを15～20分ほど歩いたところにあるので、東京駅からならば最短2時間と少しで行くことができる。

セミナーハウスでは、Tambara Institute of Mathematical Sciencesとして数理科学の様々な分野における国際的な研究集団、数理科学研究科各教員の主催するセミナーの合宿他に、理学部数学科進学生玉原高原オリエンテーション、群馬県立沼田高等学校、群馬県教育委員会のご協力のもと、群馬県下の高校生を対象にした東京大学「高校生のための現代数学講座」、「高校生玉原数学セミナー」が行われている。

平成17年度「高校生のための現代数学講座」は、「論理と暗号」をテーマに8月12日、19日、9月10日の3日間、および「確率の考え方」をテーマに10月22日という日程で講座を開催した。この講座には、毎回、高校生50名、高校教員9名程度の参加があり、玉原高原の美しい自然の中で、真剣に数学に取り組む高校生の姿が印象的であった。平成17年度の講座の詳細については、下記のウェブページをご覧いただきたい。

http://tambara.ms.u-tokyo.ac.jp/lectures_for_highschool2005.html

数理科学研究科の数理ビデオアカイブスのプロジェクトにより、この講義の様子はビデオ映像として発信されている。ウェブページからのリンクをご覧いただきたい。高校生を対象にした東京大学「高校生のための現代数学講座」、「高校生玉原数学セミナー」が行われている。
01 ボランティアによる三囲郎池環境整備を実施

東京大学では、若手職員によるプロジェクト（プロジェクトK）を結成し、既存の組織では提供していない業務について取り組む。その一つのボランティアチームでは、ボランティア活動を通じて教職員、学生、地域の方とのネットワーク作りをテーマに、試験的なボランティア活動として環境整備を11月に行った。活動場所は、夏目漱石の「三四郎」で有名な本郷キャンパス内にある三四郎池とした。

当初の予定日が雨天順延となり、残念ながら本郷第六中学校の生徒さん15名が不参加となかったが、日程の調整にも関わらず、教職員とその家族、周辺の住民の方など子供から高齢者まで26名の方が集まってくださった。

三四郎池は樹木が多く大量の落ち葉があり、1時間半の清掃で90合のゴミ袋、65袋分の予想以上の量の落ち葉が集まった。またゴミも多く捨てられており、プラスチックゴミや空き缶、ペットボトルや傘などもみられ、維持管理の不十分さを感じた。

終了後は参加者の方に農学部附属農場から提供された里芋や大根を使用した塩汁を振る舞った。清らかな秋晴れの中、なごやかな雰囲気の朝食会を通して交流が行われた。

参加者からは「楽しかった」「いい運動になった」「ままずか参加したい」「東京大学の教席に入るのは難しい」といった声が聞かれ、ボランティア活動を通してつながりを構築することは可能であると感じた。

今後十分に検討する必要があるが、このような活動が定期的に実施されることを望む。

02 園芸同好会「ミドレンジャーズ」活発に活動中

農学系事務職員が主体の園芸同好会「MIDRANGERS」は、message科長の「世界最高水準の事務を指」としていただきたい」とメッセージの影響を受け、環境整備を業者に委ねず、自らの力で構内の環境を良くしたいとの思いから発足したグループで「仕事はして当たり前の仕事以外に何をするか、何ができるか」の精神を基本コンセプトとしている。

グループは、まずは実践可能なことから取り組んだ。荒廃していた3号館中庭を開掘し、ウッドデッキのテラスを設けるとともにレンガのアプローチや花壇を設けた。また中庭だけでなく、農学門から3号館へ繋がるメインストリートの整備も行った。むろん活動はボランティアである。就業時間外、それとも土曜日に活動することが多かったことから「土曜大工」と称された。

ウッドデッキやレンガのアプローチの設計及び造作に携わった人々は全員が素人である。しかし、素人の作る作品は多様な表現で映る各方からの絶賛されている。今後、教職員及び学生の憩いの場として永く愛されるよう望んでやまない。
学生による活動：環境三四郎

環境問題の解決を目的として平成5年に設立された環境三四郎は、設立以来「学習と行動」「批判ではなく提案」「交流そして成長」という理念に沿って活動を続けて来ている。現在では東京大学の学生及び卒業生を中心に約200名が在籍し、駒場キャンパスを拠点に学部1,2年生を主体とした活動がcentreとなっている。以下に、平成17年度に行った活動の一部を報告する。

01 教養学部前期課程 テーマ講義

全学自由ゼミナール「環境の世紀ⅩⅩ」開講

環境三四郎は設立当時より、教養学部前期課程のテーマ講義「環境の世紀」の企画運営に協力をしている。12回目となる平成17年は、「私たちに何ができるのか」とテーマに学内外から先生を迎え、オムニバス形式で講義を行い、100名を越える学生が受講した。さらに、毎回の講義後には、講師と学生によるゼミが行われ、研究発表やロールプレイングなどによって講義の内容をさらに深く理解する場となった。また最終回には、「環境問題と報道」というテーマで環境三四郎が調査した内容を発表した。

02 『エコブームを問う -東大生と学ぶ環境学-』刊行

平成16年に開講された「環境の世紀ⅩⅩ」の講義内容を元に編集した『エコブームを問う -東大生と学ぶ環境学-』を平成17年5月、学芸出版社より刊行した。工学や農学、経済学、文化人類学、社会学など、幅広い切り口から問題にアプローチし、これから「環境問題」を学んでいる人たちは必要となる考え方や方法、視点や技術をまとまった内容となっている。

03 古着市出店

平成15年より毎年実施されていた古着の回収を継続改善して行った。古着は駒場キャンパスの学生などから買い取り、本郷キャンパスで行われた五月祭に古着市として出店し、販売した。また五月祭では古着の販売と同時に、環境問題を身近に感じてもらうための冊子を無料配布した。

04 環境週間2005実施

6月20日から24日を環境週間とし、駒場キャンパスで身近な環境問題を意識してもらうための活動を行った。3回目となる平成17年の環境週間も東京大学消費生活協同組合との共催で行われ、期間中は書籍部に環境関連のコーナーを設置したり、購買部のレジにレジ袋を受け取らないことを推奨する「Noレジ袋レーン」を設置した。

05 自然環境の調査・観察

自然とふれあい、自然に関する理解、知識を深めていくことを目的として、月に1回のペースで東京近郊の自然環境に実際に赴き、調査・観察等を行った。多摩川流域の河川保護の調査、新宿中央公園・ケアイコミュニティ原宿の丘のヒオトープ見学、東京湾谷津干潟の見学、渋谷区内の線路跡の植物観察、梅枝山林の鹿による食害の調査、所沢の放射線の調査、間伐体験などを行った。

06 駒場キャンパスの環境改善活動

キャンパス全体のシステム改善を通して自然に環境改善が行われるようにすることを目的に活動した。主な成果としては、不燃ごみとして捨てられているビニール・プラスチックに着目し、教職員へのヒアリング、処理工場見学などの調査を行い、結果を提案書としてまとめ、教養学部に提出した。http://www.sanshiro.ne.jp/
第78回五月祭は、平成17年5月27日（金）午後の学内公開に始まり、5月28日（土）、29日（日）の一般公開と3日間にわたり本郷キャンパスで開催され、講演会、研究発表の展示、音楽演奏、趣味を凝らした各種パフォーマンスの披露や模擬店等347件の企画で賑わった。一般公開日は両日ともに五月晴れの晴天に恵まれ、来場者は両日合わせて平成16年を上回る約65,000人（平成16年約59,000人）となった。最終日には小宮山経緯による特別講演が催され、高校生からお年寄りまで、の幅広い層の来場者450人程が熱心に耳を傾けた。また、公開講座、東京大学ガイダンス、谷垣穂一財務大臣の講演会等はいずれも盛況、三田邸池のほとりでは静寂と涼を求める来場者が野点を楽しみ、御殿下グラウンド付近の木陰ではラクロスやサッカーの交流試合に声援を送る姿も見られた。

五月祭では五月祭常任委員会を中心に企画団体のとりまとめを行った。例年のごとくごの分野による環境対策に加え、本年からは夜間の居残りを認めないことにより、飲酒などによるトラブル等を防ぐ努力を行った。最終日、静けさを取り戻した夜のキャンパスで委員会の学生が丹念にゴミを拾い、平成17年の五月祭は幕を閉じた。

オープンキャンパス2005

大学を知るには実際に志望校に足を運ぶのが一番の方策ということで、近年受験生の間ではオープンキャンパスが人気を博している。東京大学も平成12年よりスタート。平成17年は8月22日頃オープンキャンパス、3日間観察キャンパスで開催、模擬授業や研究室訪問、キャンパスツアー等、大学をより詳しく知るための様々なプログラムが用意され、2日間で2,411人の高校生・受験生が参加した。

8月2日A.M.9:00の本郷キャンパス。受付の安田講堂では当日の予定表やパンフレット、キャンパスマップなどが配られた。A.M.9:30から安田講堂でオリエンテーション。小宮山総長の挨拶とメッセージに始まり、東京大学の歴史や活動の紹介、当日のスケジュール説明が行われた。A.M.10:30になると学部コースでは、法・医・工・文・理・農・経済・教育・薬学部の9学部が模擬授業や研究室見学、学生との質疑応答などの企画で参加者を歓迎。学部の特徴やどんなことを学べるかを直接知ることができる貴重なチャンスとなった。P.M.14:30～17:00の学生ガイダンス、キャンパスツアーは4回に分けて行われ、参加者は指定された回に参加した。同時に各研究所の自由見学も行われ、ガイダンスやキャンパスツアーに参加できなかった人も納得の内容となっていた。
本郷消防署との協働

本郷消防署が東京大学で体験型防災訓練を実施

11月10日（木）、11日（金）の2日間で、本郷消防署が東京大学内にて体験型防災訓練を実施した。本郷地区は住民の高齢化とともに家主・救助等を手伝う「若力」が不足しているため、災害時には東京大学学生が自主的に地域防災活動を行う機会が増えることが想定される。今回の訓練は、そのような地域防災活動に必要な救助・救援の知識・技術を習得するために行われた。

防災訓練当日は、東京大学内に広域災害訓練に様々な体験訓練コーナーが設置された。子どもたちの目を引いたコーナーは、震度2から震度7までの地震の揺れを階段的に体験できる「起震車」。恐ろしい

起震車に乗る場の学生達は皆、その揺れの激しさに驚きを隠せない様子であった。

時日の流れ、火の怖さを体験できる「炎体験ハウス」も注目の的。火災の場合、炎を吸わずに上手に避難するための訓練装置で、ビニール製のハウスの中は迷路になっており、参加者はもうまくと炎の充満する中を手探りで進み、その怖さを実感していた。

他にも、消火器による消火訓練、避難説明訓練、放水訓練、チェーンソー操作訓練等、多彩な体験メニューが用意され、消防職員の皆さんのは指導のもと、集まった学生達は興味津々で参加していた。

防災活動一覧 本郷消防署と東京大学による協働活動は下記の通りである。

※活動内容は発表予防団等で示されるものに基づく。

<table>
<thead>
<tr>
<th>NO</th>
<th>活動実施日</th>
<th>活動内容</th>
<th>東京大学参加人数</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4月21日</td>
<td>消防訓練</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4月24日</td>
<td>五月に伴う自主訓練（学生）</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5月6日</td>
<td>五月に伴う自主訓練（学生）</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5月19日</td>
<td>消防訓練</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6月1日</td>
<td>消防訓練</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8月10日</td>
<td>消防訓練</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9月2日</td>
<td>消防訓練</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9月16日</td>
<td>自動消防団接続大会</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10月20日</td>
<td>消防訓練</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11月10日－11日</td>
<td>地域防災訓練（ステップアップ訓練）</td>
<td>1,100</td>
<td>2日間</td>
</tr>
<tr>
<td>11</td>
<td>11月17日</td>
<td>消防訓練</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12月7日</td>
<td>消防訓練</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12月7日</td>
<td>地域防災訓練（ステップアップ訓練）</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12月21日</td>
<td>消防訓練</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1月17日</td>
<td>消防訓練</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1月19日</td>
<td>地域防災訓練（ステップアップ訓練）</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1月25日</td>
<td>消防演習（町会消防団との合同演習）</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

合計参加人数（総数）2,420名
Section 5. その他の活動について

アスベストへの取り組み

平成17年6月下旬、アスベストを使用していた事業場の営業災害事例が公表されて以来、複数の事例が一連
上げられ、従事者のみならずその家族、工場周辺の住民への影響を含め、大きな社会課題となっている。アスベストによる健康影響は鈍化期間が数十年と長いこともあり、長期にわたる適切な対応が必要であり、東京大学としても、アスベスト使用状況の現状把握と安全措置の徹底に取り組んでいる。

1. アスベスト使用状況の調査
東京大学では、昭和62年6月の文部省（現文部科学省）からの事務連絡に基づき「吹き付けアスベスト」の実態調査を行い、計画的にアスベスト対策を実施してきた。平成17年度には文部科学省より、これまで対象とされていた「吹き付け石綿（5%以上含有）」に加えて、「吹き付け岩綿」が1%以上含有された「吹き付け石綿」「吹き付け岩綿」「吹き付けひざし石綿」を対象とした調査の実施が通知され、これらについて調査を行った。調査対象は平成8年以前に建築された建物で、東京大学の対象建物は1,043棟、延べ面積約105,000㎡であり、それらについて現地目視調査及び図面調査を行った。

2. 調査結果
吹き付けアスベストを使用していた部屋は188室
11,764㎡（平成17年11月現在）で全体の約1.1%に
ある。その内アスベストの欠損、剥離の認められる
部屋は、13室1,578㎡で全体の約0.2%。13室の内訳
は、農学部5号館地下1階実験室、医学部総合中央館
（図書館）書庫、その他の大入りの少ない場所で
ある機械室、倉庫類である11室。なお、調査結果の詳細は環境安全本部ホームページ（学内専用ページ）に掲
載している。欠損・剥離した吹き付けアスベストにつ
いては、即座に臨時的な飛散防止措置を行った後、平
成17年度中に工事を行い、除去又は飛散防止措置
を適切に行った。安定（露出した未処理の状態で、欠損）も見られない状態）又は囲い込み措置を施
されている部屋については全ての室内環境測定を実施し、石綿繊維の飛散がないことを確認した。安定して

東京大学石綿対策ガイドラインに従ってアスベストが確認される部屋や実験機器等には、アスベスト表示ラベル（下図）を貼付することでアスベストが使用されていることを周知するとともに、注意喚起を行い健康影響の予防を図っている。さらに学内に向けてアスベストに関する相談窓口を設け、アスベストに関する健康相談及び希望者への健康診断を実施してい
る。平成18年3月現在、吹き付けアスベストのある
部屋は東京大学内において106室（内18部屋は一部
のみ）で一部の部屋が計画的に吹き付けアスベストの除
去を行うとともに、研究室等にあるアスベスト含有実験機器等の適切な維持管理及び非石綿材への代替や
機器の更新に努め、学内に存在する石綿の削減と適切な管理に努めている。
平成17年7月4日、東京大学大学院農学生命科学研究科リサーチフェローの山下広司氏（享年30歳）が八丈島ナズマド地区で潜水作業中に事故に遭われ、殉職された。この事故は、潜水防止の国家資格の所持状の危険作業に関する安全管理体制の不備など、大学としての安全管理上の問題が浮き彫りになった事故であり、9月30日には東京大学及び指導教員が労働安全衛生法違反により書類送検された。東京大学では安全衛生の確保は教育研究活動の根幹であるとの認識をもとに、このような事故の再発を防止するため、事故原因の究明と安全衛生管理体制の強化、安全衛生の意識向上に取り組んでいる。

1. 事故原因究明への取組み
事故発生後、東京大学では東京大学大学院農学生命科学研究科水産作業事故調査委員会、次いで全学調査委員会により事故原因の調査及び再発防止策の検討が行われた。全学調査委員会は学外の専門家を委員に迎え、審議を公開して10月31日から計6回開催されたほか、山下氏が作業中に使用した器材の検証を2回、八丈島での現地調査及び関係者ヒアリングを実施している。3月30日に公表された全学調査委員会報告書では事故の直接原因と大学の安全衛生管理面において以下のような指摘がなされている。

(1) 事故発生の直接原因について
事故は単独で浮上した山下氏がパニック等何らかの原因により溜水して発生したものであるが、ダイビングにおいては必要とされるバディシステムがとられておらず、引率者として全体を監視、監督すべき指導教員の安全管理が不十分であった。潜水作業の危険性そのものの認識の欠如が、無資格就業、不十分な潜水計画及び緊急事態への対策不備として表れている。

(2) 農学生命科学研究科及び東京大学全学の安全管理体制の不備について
大学の安全衛生管理は主に研究室に委ねられ、統制的な管理が行き届いていなかった。

(3) 安全衛生管理上の責務と再発防止策について
①人材の育成・要員の増強
②管理組織の責任と権限の見直し強化、階層構造の明確化
③危険作業等の把握、無資格・無免許作業禁止の徹底及び資格取得の計画的推進
④潜水作業実施研究室の全学情報交換組織の作成
⑤レベル向上のための多様な手法の導入と安全文化の再構築
⑥研究教育面での意識改革・研究室間の壁の打破
⑦野外活動の事前出動の制度化
⑧事故再発防止、風化防止のための絶えざる努力

2. 再発防止のための具体的行動
(1) 安全衛生管理体制の強化と責任と権限の明確化
H17.10.27 環境安全グループを設置、要員増強
H18.4.1 教職員の安全管理規程改正、安全衛生管理組織の責任と権限の明確化
(2) 潜水作業を含む野外活動での安全確保対策
H18.3.17 野外活動に関する安全衛生規程制定、野外活動の安全衛生マニュアル作成
H18.7.4 全学「安全の日」に制定、安全シンポジウム開催

図1『野外活動における安全衛生管理・事故防止指針（ポケット版）』
図2 安全シンポジウム風景
バリアフリーへの取り組み

先端科学技术研究センターバリアフリー分野助教授 福島浩

社会の多様化への対応は益々強く求められている。東京大学童星でも「構成員の多様性が本質的に重要な意味をもつことを認識」と講まれている。バリアフリーは障害者雇用を含めた大学の社会的責任は当然であるが、加えて多様な価値観が大学に導入され、知的空間に新風が吹き込まれることが期待される。

私たちは自然環境と社会環境の影響を受けながら生活している。一見今日の日本の社会環境は苛酷なものでないように思えるかもしれませんが、しかし、たとえば障害者にとってのそれはまだまだ厳しい。障害者が生活を送る上で、他の支えがなかったり、制度の不備によって時間が遅れられたり、既存の製品や建物が利用できなかったりすることに伴うバリアの経験は日常体験事実だ。

東京大学のバリアフリーの取り組みは、バリアフリー支援室（以下「支援室」）を通じて支援を実施することが先端科学技术研究センターバリアフリー分野（以下「分野」）の中心の支援をなしている。特に、障害者が施設内での生活環境整備を目的とし、分野が社会全体の環境を研究するという意味での看護の関係がある。また、「支援室」が実際の支援を通じて環境の改善に直接携わるのに対して、「分野」はそうした環境の改善による効果があるかをみた結果について検証し、それを支援の現場にフィードバックするという意味で、相互依存の関係にあっている。

「支援室」は平成14年10月にバリアフリー支援準備室として発足（平成16年4月に現在体制に改組）して以来、障害のある学生・教職員の学習・研究・勤務・生活環境の充実を図っている。平成17年度においては、副学長をトップとする19名の学部からなる支援室会議の方針に基づいて、各学部の支援スタッフが実際の支援業務を行っている。特筆すべきことは、「障害者支援」ではなくバリアフリー支援だということだ。支援されるべきは障害者本体だけでなく、むしろ本体的には、自覚を欠いたままバリアを生み出してしまってきた大学という存在、あるいはその構成員一人ひとりという視点である。

「支援室」が取り組んでいる新たな課題は障害者雇用の推進だ。そもそも大学の構成メンバーを決める段階でバリアが存在し問題が浮き彫りになっているんだとしたら、それは「構成員の多様性が本質的に重要な意味をもつことを認識」すると説った東京大学童星の精神に反するだろう。

「分野」は平成13年の創設以来、学間間の垣根を越えたバリアフリー研究の原動力・起爆剤としての役割を果たしている。専任教員は私だけでなく、安定した研究推進の基盤が整っているとはいないものの、平成17年度までの5年間を私がディレクターとするバリアフリープロジェクトを継続し、さらに17年度からはより私等は代表を務める学際的な6年計画の学際バリアフリー研究プロジェクト（専任教員：中邑賢彰先端研究所教授）がスタートした。また関連する他の部門との連携が進んできたことなどにより、厚みを持たせたバリアフリー研究の体制が構築されつつある。こうした一連のバリアフリー研究の特徴は、バリアに対する多角的なアプローチが凝集されているということだ。

従来のバリアフリー研究は障害者の心身機能の代替や物理的バリアの除去を目指すというのが主流だが、障害者の生活を制御している社会環境の中には様々な制度であれば一人ひとりの他者も含まれるわけだから、本来それらについての研究も不可欠だ。このことを踏まえて、「分野」では「人と人」、「人と科学技術」の関係を含めた社会的バリアの除去が探求されている。

また、「当事者性」の重要性がキーワードだ。「分野」や関連プロジェクトにおけるバリアフリー研究には、多様な障害のある教員・研究員・学生・研究協力者等が関わり、高度化が進む大学の知的空間に新風が吹き込んでいる。バリアフリー支援を通じて、多様な性を持ち、多様な視点と能力が身に付いた人材が育成され、そうした人材がバリアフリーの研究と実践に貢献することで、多様性に開かれたより豊かなバリアフリー社会が構築・構築されていく。そうした循環を生むべく、日々挑戦が続けられている。
障害者雇用の推進

1. 障害者雇用の理念
障害者の雇用の促進等に関する法律（以下「障害者雇用促進法」という。）第5条では、「すべて事業主は、
障害者の雇用に関し、社会経済の理念に基づき、障害
者である労働者が有為な職業人として自立しようとす
る努力に対して協力する責務を有するものであって、
その有する能力を正確に評価し、適当な雇用の場を与
えるとともに適正な雇用管理を行うことによりその雇
用の安定を図るように努めなければならない。」とさ
れている。

東京大学も一事業主として、当然、その責務を果たす
ため、障害者の雇用に積極的に取り組む必要がある。
その際には、東京大学における障害をもった教職員の
支援実施要綱に基づきパリアフリーのための人的・物
的支援並びに基本的人権の尊重を明記した東京大学憲
章の精神を活かすものでなければならない。

2. 障害者雇用の現状
障害者雇用率制度の概要: 障害者雇用促進法に定める
障害者雇用率は、平成10年7月から一般の民間企業
が1.8%、特殊法人等が2.1%となった。また、平成
16年4月1日から除外率制度及び除外職員制度が改
定され、国立大学法人は、従前、除外職員であった教育
職員及び看護師等が雇用率算定の労働者数に算入され
るとともに、除外率（原則40%）が適用されること
となった。

東京大学の現状: 障害者雇用率の算定にあたっては、
平成15年度までは文部科学省全体での管理となって
いたが、国立大学法人となって、一事業所として個別
に算定されることとなった。また除外職員制度及び除
外率制度の適用を受けることとなったため、平成16
年6月1日現在の障害者雇用率1.46%となり、法
定雇用率を下回ってしまった。これを受けて、飯田橋
公共職業安定所の一加令の定めるところにより障害
者雇用奨励計画の作成命令が発出され、東京大学で
は、平成17年1月1日から平成19年12月31日ま
での3年間に障害者を新たに46人雇用する内容の雇
用計画を飯田橋公共職業安定所長に提出し現在その達
成に向けて取り組んでいるところである。

3. 障害者雇用の今後の方向
東京大学では「東京大学の障害者雇用に係る行動計画」
を策定し、次の方策により障害者雇用を推進していく
こととした。

ヘルスキーの雇用: 学生及び教職員の健康増進と
福厚厚生の観点から、保健センター勤務者にヘル
スケアルームを設置し、視覚障害者のヘルスキー
（あん摩マッサージ指圧師の資格保有者）を雇用する。
（平成18年4月1日付け2名雇用）

環境整備スタッフの雇用: 平成17年度まで、業者委
託により行っていた本校地区の構内清掃について、知
的研究者を主とした障害者を直接雇用し、環境整備ス
タックに切り替え。また、日々の管理や業務指
導と併せ、安全衛生面及び、生活面についても配慮
するコーディネーターを配置する。（平成18年4月1
日付け10名雇用）

バイロット部局における雇用: 経済学研究科において
は、障害者雇用のバイロット部局となることを決定し、
西田区立知的障害者就労支援センター「すくっぷり」
の協力を得て、知的障害者が可能な業務の切り出しを
行い、実際に実習生（知的障害者）を入室、その結
果、2名を短時間無期限雇用職員として雇用した。

部局における障害者雇用の推進: 経済学研究科での採
用実績の経験やノウハウを全学に周知し、障害者雇用
を積極的に行うよう会議等で働きかけている。

平成18年度 環境整備スタッフによる活動の様子

東京大学における障害者雇用状況

- 在職者数
- 対象者数
- 法定雇用率
- 雇用率

注1) 法定雇用率（2.1%）
注2) 平成15年度以降は、対象職員数を除いて算定。
注3) 平成16年度からは、特定有期及び短時間（週30
時間未満）を含んで算定。
注4) 対象者数は在職者数の60%。

注5) 雇用率は平成16年度以降
第三者意見

柳下正治 上智大学大学院地球環境学研究科教授

興味深く読んで頂いた。教育・研究分野のリーダーであり、持続性の実現向け「知の先導者」としての役割を果たしている東京大学自身が、その環境保全の取組の全体像について情報開示することの意義は大きい。以下、本報告書に対し率直な意見を述べたい。

1. 大学における環境保全の第一は、教育・研究活動における環境負荷の明確な把握と計画的な環境負荷削減にある。各キャンパスからの給水管理、PRTR 届出に基づき環境負荷の実態の把握、エネルギー使用量・CO2 排出量の把握と省エネルギーの取組等の現状報告については一定の評価を行いたい。ただし、環境負荷発生の要因の解消、更には短期・中期の行動計画に沿った環境改善の取組の推進や評価という PDCA の確立は今後の課題として残されている。いずれにせよ、主要 5 キャンパスでこの 2 年間で CO2 排出量が約 11％を増加している実態に関しては深刻に受け止め、増加要因の究明と対策の実施に向けて全力を挙げるべきではないか。

2. 環境教育は大学における重要な課題である。この点に関しては、講義の教育実態、学生・教員の活動の個別事例の紹介にとどまることなく、大学としての環境教育、研究者等の人材育成の方針に基づいたリーディングが欲しいと切である。一方、大学教育とは別に、大学の全ての構成員がそれぞれの活動の中で環境問題を学び、習得していくのが理想である。リスクという考え方をベースとして、環境保全のみならず、安全・安心や環境を極めた取組により、社会から信頼を得ることは何かを学び、それぞれの活動に生かしていくことを期待したい。

3. 最先端の研究発表・演講、多くの研究プロジェクトを推進している知のリーダーである東京大学には、持続可能性をはじめ、各分野の先進的な研究を強力に進めるとともに、これらの研究成果が人類社会に悪影響ある負の影響に必要とすることに対し、期待が大きい。報告書が、環境保全に関する研究の全体像と実践的な貢献を、より分かりやすくアピールすることができる。市民とのサイエンス・コミュニケーションの提携の場となることができれば、本報告書は本格的に活用されるのではないか。

4. 社会に開かれた大学の現実は、東京大学においても重要課題である。キャンパスは地域社会にとって公園であり、災害時に避難場所でもある。こうした点を含めると、大学には多様な社会的責任が求められており、環境報告書はそのような社会的責任を果たすべきである。その観点から本環境報告書を見ると、一部踏み込んだ情報公開への努力、写真や図を用いた一般市民の理解を容易にするための努力を大いに評価する。

経歴: 1971 年 東京大学工学部都市工学科卒業。環境センターワークを経て、環境保全研究者としての活動を進め、環境保全の推進の動機付けを含む。現在は、環境保全の推進の動機付けを含む。CSR 報告書を発展しつつある。研究、教育や識論等を通じた環境取組を果たしてきた大学が、やや遅れをとったが自らの取組の情報開示を通じた社会との対話を開始した。このことの意味が大きい。大学の大きな社会的責任を再認識し、環境保全活動・取組の推進のきっかけとして、その意義において、本報告書が、多くの市民はもとより、東京大学の多くの教職員に読まれ、個人及び組織の自己点検と取組の強化に結びつけていくことを期待してやまない。
以上の課題について検討頂き、来年度より更に優れた環境報告書が作ることを期待する。
大学における環境保全、改善に関する取り組みは次のような点が挙げられます。
1. 日々の大学の教育・研究活動に伴う環境汚染物質の排出やエネルギー消費の最小化
2. 環境保全に関する教育、環境意識に目覚めた学生の育成
3. 環境改善や持続性維持に関する研究と研究成果の発信
4. 地域社会の一員としての各種貢献（地域の環境・安全の向上を目指しての協働）
さらに東京大学と日本の先端のリーダーとして、各種最先端の研究とその成果の融合で、全世界に向けての情報発信、さらには研究成果を産学官の連携を通じて社会の発展に役立てることが求められています。
一方、環境保全や改善への取り組みに対する社会のニーズはますます拡大し、近年は企業においてもCSR（企業の社会的責任）に代表されるように単なる環境面の活動だけでなく、企業活動全般に対する社会的信頼確保がますます求められており、この点で環境報告書の位置づけは一層重要になっています。これは、大学においても例外ではありません。今回、東京大学として初めての環境報告書を発行することとなりましたが、東京大学と関わりのある関係者に対する全学の取り組みの一部をここで紹介させていただきます。
環境保全や改善、持続性確保を目指しての活動という面で、東京大学は更なる努力が必要と考えております。環境報告書や東京大学が取り組んでいる各種活動に対し一層のレベルアップを目指して、皆様のご意見やアドバイスをいただければ幸いです。

編集後記
環境安全本部長 中西友子

今回、東京大学として初めての環境報告書が出るに至りましたので、お届けします。
東京大学の環境報告書作成を通じて先ず感じたことは教育や研究領域の広さと併せて北は北海道の豊浦野や南は奄美大島までの各地に分布するキャンパスの広さです。それぞれの教育・研究拠点で活動している教職員や学生の取り組みを環境分野のみならず大学の社会発展への貢献、社会との協働の視点を織り込んでこの報告書を作成しました。特に、循環型社会、持続的発展を目指しての環境保全面の各種データの公表や研究成果の紹介、教職員や学生の特記的な活動事例を記載しています。また、健康・衛生面では現在話題となっているオインフルエンザに関する各分野の研究事例を紹介しています。
併せて、アスベスト問題に対する全学の対応、平成17年7月に発生した潜水死亡事故と再発防止への取り組みも記載しました。
来年は皆様からのご意見やアドバイスを参考にしてさらに充実したものにしたいと考えておりますので宜しくお願い申し上げます。